Slenderness, Completions, and Duality for Primary Abelian Groups
نویسندگان
چکیده
منابع مشابه
non-divisibility for abelian groups
Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...
متن کاملOn Duality of Topological Abelian Groups
Let G denote the full subcategory of topological abelian groups consisting of the groups that can be embedded algebraically and topologically into a product of locally compact abelian groups. We show that there is a full coreflective subcategory S of G that contains all locally compact groups and is *-autonomous. This means that for all G,H in S there is an “internal hom” G −◦H whose underlying...
متن کاملSemi-abelian Exact Completions
The theory of protomodular categories provides a simple and general context in which the basic theorems needed in homological algebra of groups, rings, Lie algebras and other non-abelian structures can be proved [2] [3] [4] [5] [6] [7] [9] [20]. An interesting aspect of the theory comes from the fact that there is a natural intrinsic notion of normal monomorphism [4]. Since any internal reflexi...
متن کاملTopological Duality and Algebraic Completions
In this chapter we survey some developments in topological duality theory and the theory of completions for lattices with additional operations paying special attention to various classes of residuated lattices which play a central role in substructural logic. We hope this chapter will serve as an introduction and invitation to these subjects for researchers and students interested in residuate...
متن کاملContinuous Convergence and Duality of Limits of Topological Abelian Groups
We find conditions under which direct and inverse limits of arbitrary indexed systems of topological Abelian groups are related via the duality defined by the continuous convergence structure. This generalizes known results by Kaplan about duality of direct and inverse sequences of locally compact Abelian groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1997
ISSN: 0021-8693
DOI: 10.1006/jabr.1997.6797